[Top Page]

Link to other pages

[ここから本文です。]

Kirin Group at a Glance

Kirin Lounge Kirin Lounge

The Lactococcus Plasma anti-viral defense mechanism

Lactic acid bacteria have been receiving increased attention amid reports of insufficient supplies of the influenza vaccine. However, the characteristics of the different lactic acid bacteria are not widely known. In this article, we will describe the features of Lactococcus Plasma (Lactococcus lactis JCM5805), an original Kirin product, as well as its recently uncovered anti-viral defense mechanism.

1. What is Lactococcus Plasma?

Plasmacytoid dendritic cells (pDCs): Chief executive role among the immune cells

pDCs are one of many different types of immune cells. The defining characteristics of pDCs are that they respond to and are triggered into activation by viruses and that they produce interferon alpha (IFN-α). IFN-α transmits signals to other immune cells to, for example, suppress viral/cancer cells or suppress cell proliferation. That is, pDCs play a “chief executive” role among immune cells, activating other immune cells. General lactic acid bacteria can activate some types of immune cells, such as natural killer (NK) cells. However, they are unable to activate the pDCs which in turn activate a variety of other immune cells; it was held impossible worldwide for any lactic acid bacterium to activate pDCs.

pDCs (Chief Executives). All immune cells are fully activated by pDCs which plays a chief executive role among the immune cells. pDCs (Chief Executives). All immune cells are fully activated by pDCs which plays a chief executive role among the immune cells.

NK cells: Attack cells infected by cancer and viruses. B cells: Attack by producing antibodies to act on specific viruses. Killer T cells: Destroy virus-infected cells only. Helper T cells: Support various immune cells. NK cells: Attack cells infected by cancer and viruses. B cells: Attack by producing antibodies to act on specific viruses. Killer T cells: Destroy virus-infected cells only. Helper T cells: Support various immune cells.

Lactococcus Plasma discovered by Kirin

The established theory was that no lactic acid bacteria able to activate pDCs existed. However, we took up the challenge to overturn this theory by identifying a strain of such lactic acid bacteria and converting it into an effective technology to reduce the risk of viral infection. After exploring over 100 lactic acid bacteria using cutting-edge technology, in 2010 Kirin succeeded in discovering a lactic acid bacterium that activates plasmacytoid dendritic cells, and named it Lactococcus Plasma.

Lactococcus Plasma is able to activate pDCs, the Chief executive role among immune cells Lactococcus Plasma is able to activate pDCs, the Chief executive role among immune cells

A pDC before the addition of Lactococcus Plasma

A pDC after the addition of Lactococcus Plasma

2. New research findings

We have continued our research into Lactococcus Plasma since its discovery; various experiments have proved its highly effective anti-viral defense mechanism. Wider applications for Lactococcus Plasma can be expected as its mechanism is further explored. The research results have been published and extensively evaluated, attracting a great deal of attention among academic societies, etc.
We would like to outline some of the recent research results into the Lactococcus Plasma anti-viral defense mechanism, as follows.

Finding 1. Increase in Immunoglobulin A (IgA)

Possible an additive effect between Lactococcus Plasma intake and the influenza vaccination. Possible an additive effect between Lactococcus Plasma intake and the influenza vaccination.

IgA plays a crucial role in the immune mechanism of the digestive and respiratory tracts. It is also a component of colostrum for the protection of newborns against bacteria and viruses. Its characteristics include the capacity to respond to various types of pathogens and its presence in mucosal membranes (e.g. saliva, the nasal cavity), entry points for foreign bodies. As a result of analyzing the amount of IgA in saliva, it was found that those who had taken Lactococcus Plasma (the Lactococcus Plasma group) had a higher amount of IgA compared to those who had not (the placebo group).

Finding 2. Maintaining the level of expression of virus resistance genes in those who had taken the vaccine

Those who had also received the influenza vaccine maintained their levels of the influenza virus resistance gene to a significantly higher extent, indicating the possibility of an additive effect between Lactococcus Plasma intake and the influenza vaccination.

Possible an additive effect between Lactococcus Plasma intake and the influenza vaccination. Possible an additive effect between Lactococcus Plasma intake and the influenza vaccination.

Through uncovering the above mechanism, we have identified that Lactococcus Plasma not only contributes to the prevention of a range of viral infections but is also expected to have an additive effect in those who have received the influenza vaccination.

Kirin will continue to undertake research into Lactococcus Plasma as part of its ongoing contribution to consumer well-being.

[footer]

© 2007 Kirin Holdings Company, Limited.

Back to top